Splices, Connectors, and Fiber Optic Components

- •Fiber cable lengths are limited
- •How do we join fibers?
 - -Splices
 - -Connectors
- •Can we divide the power in a fiber?
 - -Ex., 1 fiber in; 2 fibers out
- •How can we isolate a laser source from back reflections?
- •Can we make optical filters out of fibers (i.e., ready to splice into fiber links)?

Fiber Joints

Joints

- -Interconnect fiber lengths
 - Available up to few kilometers
- -Connect source/detector pigtails to fiber
- -Pass through bulkheads, walls, etc.
- •Want...
 - -Low insertion loss
 - -High strength
 - -Simple installation
- Two types of joints
 - -Splice: permanent joint
 - Connector: temporary joint

Connectors and Splices: Joining Losses

- Causes of loss
 - -Intrinsic losses: Depend on fiber properties
 - Extrinsic losses: Losses due to external factors (e.g., fiber misalignment)
- Coupling efficiency:

$$\eta = P_{
m out}/P_{
m in}$$

- -In general, not same in both directions
- Joint loss: dB equivalent of coupling efficiency

$$L_i = -10\log(P_{\text{out}}/P_{\text{in}}) = -10\log(\eta)$$

Fiber Parameter Effects: Multimode Fibers

- Coupled optical power depends on number of modes in each fiber
 - -Number of modes:

$$N = k^{2} \int_{0}^{a} NA^{2}(r) r dr = k^{2} NA^{2}(0) \int_{0}^{a} \left[1 - (r/a)^{g} \right] r dr$$

- -Optimum coupling when number of modes is matched
- -Loss factors
 - »Core radius a, numerical aperture NA(0), index gradient g
- -Isolate effects as if independent and add dB losses
- •Losses also depend on mode power distribution
 - -Assume uniform distribution
 - Reality: uneven distribution due to launch conditions or mode coupling effects
 - -Measurements need to be made with all modes equally excited

Fiber Parameter Effects: Multimode Fibers (cont.)

- Effects of joining mismatched fibers
 - 1. NA effects:

$$\eta_{NA} = \begin{cases} \left(\frac{NA_{r}(0)}{NA_{e}(0)}\right)^{2} & NA_{r}(0) < NA_{e}(0) \\ 1 & NA_{r}(0) > NA_{e}(0) \end{cases}$$

$$\Rightarrow L_{NA}[dB] = -10log(\eta_{NA})$$

 $NA_r(0)$ [$NA_e(0)$] is NA of receiving [emitting] fiber

2. Fiber radius effects:

$$\eta_r = \begin{cases} \left(\frac{a_r}{a_e}\right)^2 & a_r < a_e \\ 1 & a_r > a_e \end{cases}$$

$$\Rightarrow L_r[dB] = -10\log(\eta_r)$$

3. Index profile effects:

$$\eta_g = \begin{cases} \frac{g_r(g_e + 2)}{g_e(g_r + 2)} & g_r < g_e \\ 1 & g_r > g_e \end{cases}$$

$$\Rightarrow L_{g}[dB] = -10\log(\eta_{g})$$

Combined effects:

$$L_{\text{Total}}(\text{dB}) = L_{\text{NA}} + L_r + L_g$$

Splice-5

• E.g., Coupling 50/125 SI (emitting) fiber with NA of 0.15 to 62.5/125 GI (g = 2) receiving fiber with NA =0.20 gives η = 0.5 (3 dB)

Fiber Parameter Effects: Multimode Fibers (cont.)

- Loss is also function of...
 - -Quality control of fiber fabrication
 - » Ellipticity of core
 - » Variations in *n(r)*
 - » Core concentricity within cladding
 - » Variation in core diameter
 - » Other factors that depend on fabrication tolerances
 - -Dominant effects: core diameter and NA
 - -Lesser effect: core ellipticity and *n(r)*
- •User has little control over these factors
 - -Specify tolerances
 - -Establish acceptance screening procedures

Splices and Connectors: Misalignment Effects

• Extrinsic effects

- Under control of connector/splice designer and user
- Primarily due to misalignment of fibers
- Determine required mechanical tolerances to meet given loss allocation
- In analysis of misalignments, usual assumptions are...
 - Fibers have equal radii, index profiles, and NAs to isolate misalignment effects
 - Power is uniform distribution across core area

Connectors and Splices: Lateral Displacement Effects

Losses due to lateral fiber offset

SI fiber:

$$\eta_{\text{SI lateral}} = \frac{2}{\pi} \cos^{-1} \left(\frac{d}{2a} \right) - \frac{d}{\pi a} \sqrt{1 - \left(\frac{d}{2a} \right)^2}$$

$$\Rightarrow L_{\text{SI lateral}} = -10 \log(\eta_{\text{SI lateral}})$$

(Calculation of overlapping circular areas, centers separated by d)

•GI fiber:

$$\eta_{\text{SI lateral}} = \frac{2}{\pi} \cos^{-1} \left(\frac{d}{2a} \right) - \frac{d}{\pi a} \sqrt{1 - \left(\frac{d}{2a} \right)^2} \qquad \eta_{\text{GI lateral}} \approx 1 - \frac{8d}{3\pi a} \quad \text{or} \quad \eta_{\text{GI lateral}} \approx 1 - \left(\frac{2d}{\pi a} \right) \left(\frac{g+2}{g+1} \right)$$

$$\Rightarrow L_{\text{SI lateral}} = -10 \log(\eta_{\text{SI lateral}}) \qquad \Rightarrow L_{\text{GI lateral}} = -10 \log(\eta_{\text{GI lateral}})$$

Connectors and Splices: Longitudinal Displacement Effects

Losses due to longitudinal displacement

 Some light has spread beyond the area of receiving fiber core •SI fiber:

$$\eta_{\text{SI long}} = \left(\frac{1}{1 + \frac{s}{a} \tan \theta_{\text{max}}}\right)^2 \Rightarrow L_{\text{SI long}} = -10 \log(\eta_{\text{SI long}})$$

(θ_{max} : maximum acceptance angle = sin⁻¹ NA)

Or

$$\eta_{\rm SI \, long} \approx 1 - \frac{s\sqrt{2\Delta}}{4a} \Rightarrow L_{\rm SI \, long} = -10 \log(\eta_{\rm SI \, long})$$

• GI fiber: No similar formula available (?)

Connectors and Splices: Angular Misalignment

•Losses due to angular misalignment

GI and SI fiber:

$$\eta_{
m angular} pprox rac{1}{1 + rac{\sin \phi}{\sqrt{2\pi\Delta}} \left(rac{\Gamma\left(rac{2}{g} + 2
ight)}{\Gamma\left(rac{2}{g} + rac{3}{2}
ight)}
ight)} \quad \Rightarrow \quad L_{
m angular} = -10 \log \left(\eta_{
m angular}
ight)$$

 $\Gamma(x)$ is Gamma function

Splices and Connectors: Reflection Losses

• (Fresnel) reflection loss

-Coupling efficiency at perpendicular interface is

$$\eta_{\text{reflection}} = \frac{P_{\text{transmitted}}}{P_{\text{incident}}} = 1 - \left(\frac{n - n_0}{n + n_0}\right)^2 \implies L_{\text{reflection}} = -10\log(\eta_{\text{reflection}})$$

- -Reflection losses same regardless of direction of travel
- -Losses at air-glass interface: 0.2 dB each fiber face
- -Eliminate by...
 - » Use of index-matching gel or epoxy between fiber ends
 - » Physical contact of fiber ends ("PC" connection)
 - » Angled fiber ends
 - » Using optical isolators
- Return loss

$$L_{\text{return}} = -10\log\left(\frac{P_{\text{reflected}}}{P_{\text{incident}}}\right)$$

Total Losses in MM Fiber

•Total loss in multimode fiber is sum of all losses...

$$L_{\rm intrinsic} = L_{\rm NA} + L_{\rm r} + L_{\rm g}$$

$$L_{\rm extrinsic} = L_{\rm lateral} + L_{\rm logitudinal} + L_{\rm angular}$$

$$\begin{split} L_{\text{MM Total}} &= L_{\text{intrinsic}} + L_{\text{extrinsic}} + L_{\text{reflection}} \\ &= L_{\text{NA}} + L_{\text{r}} + L_{\text{g}} + L_{\text{lateral}} + L_{\text{logitudinal}} + L_{\text{angular}} + L_{\text{reflection}} \end{split}$$

Connectors and Splices: Single-Mode Fibers

- Mode field diameter (MFD) determines sensitivity to misalignment
- Coupling efficiency for two single-mode fibers
 - MFDs of W_e (emitting fiber) and W_r (receiving fiber)
 - -Lateral offset \emph{d} , longitudinal offset \emph{s} , and angular misalignment θ

$$L_{\text{Total SM}} = -10\log\left(\frac{16n_1^2n_3^2}{(n_1 + n_3)^2} \frac{4\sigma}{q}e^{\frac{-\rho u}{q}}\right)$$

 n_1 is refractive index of fiber cores (same for both fibers) n_3 is refractive index of medium between fibers

$$\sigma = \left(\frac{W_2}{W_1}\right)^2, \quad k = \frac{2\pi n_3}{l}, \quad \rho = (kW_1)^2,$$

$$F = \frac{d}{kW_1^2}, \quad G = \frac{s}{kW_1^2}, \quad q = G^2 + (\sigma + 1)^2, \text{ and}$$

$$u = (\sigma + 1)F^2 + 2\sigma FG \sin\theta + \sigma(G^2 + \sigma + 1)\sin^2\theta$$

Splices and Connectors: Fiber End Preparation

- Pits or imperfections scatter light
- End preparation techniques
 - 1. Grinding and polishing technique
 - » Polish fiber end by hand or machine
 - » Uses progressively finer abrasives
 - » Labor and time-intensive

2. Score-and-break technique

» Fiber under mild tension and scribed

- » Tension increased and crack tip propagates across fiber
- » If fiber curvature and tension are carefully controlled,
 - Crack propagates perpendicular to fiber axis
 - Creates clean, smooth break

- Expressions for coupling loss all assume that fiber end is perfect transmitter
- End faces should be parallel to each other (often perpendicular to fiber axis)

Splices and Connectors: Fiber End Preparation (cont.)

•Improper surfaces can have lip or hackle

- •Microscope inspection of fiber end necessary for end inspection
- •Tools commercially available
- •Takes little time for experienced user

Splices: 1. Fusion Splicing

Most popular splice technique

- Micro-manipulators bring prepared ends into close alignment (can be automated)
- -Ends heated with electric arc until molten; pushed together
- -Joint cools, surface tension pulls fibers into alignment
- •Losses: ~ few tenths of a dB
- Primary problem
 - -Reduced fiber strength near joint (about 60% of initial strength)
 - » Use high-strength wrapping around spliced region

- Strength reduction due to
 - * Development of surface microcracks during handling and
 - * Chemical changes in glass due to heating

Splices: 2. V-groove splice

- •V-shaped groove as alignment aid: mechanical alignment
- Apply epoxy or cover plate

- Grooves in plastic, silicon, ceramic, or metals
- Uses outside surface of fiber as reference
 - Susceptible to variations in core ellipticity, concentricity, and size
 - Unequal diameters cannot be spliced
- Fiber ends require preparation before splicing
- Losses: few tenths of a dB

Splice-17

 Variation on this technique, called loose-tube splice, uses corner of a rectangular tube as the alignment aid

Splices: 3. Elastic Material Splicing

•Uses elastic material to center fibers

- Self-centering
 - -Restoring forces center fiber (with respect to outside surface)
 - -Unequal diameters can be aligned
- •Fiber ends prepared before insertion
- •Drop of epoxy on fiber ends forms splice
- Losses: few tenths of a dB

Connectors

- Allow disconnection and reconnection
- •Goal: low insertion-loss connector with reproducible losses
- Most connector designs incorporate fiber into precision alignment aid
 - -Aid then plugs into receptacle in connecting piece
- Various environmental factors:
 - -Dust levels
 - -Pressure differentials
 - -Water vapor and water

Connectors: Ferrule-Based Connectors

- Ferrule: precision-drilled hole in cylinder (fiber fits inside hole)
- Ferrule fits in *alignment sleeve* to bring the fiber ends into alignment

- •Main problems:
 - -Centering fiber hole in ferrule
 - -Dimensional tolerance on ferrule hole (e.g., 126±1 μm)
 - -Centering ferrule hole in alignment sleeve
 - -Making hole slightly larger than fiber
- Alignment sleeves commonly made of aluminum, stainless steel, or ceramics

Connectors: Biconic Plug

•Injection-mold alignment element

- •Shape is "biconical taper"
- Designed to mate with housing such that fiber/plug assembly is self-centering
- AT&T patented
- Seldom used in new installations

Connectors: Expanded Beam Connector

- Microlens inserted at fiber end to collimate beam
 - Expanded beam has less beam divergence

- Receiving fiber has similar collimator
- Expanded beam reduces requirements on lateral & longitudinal alignments
 - Penalty of increasing required angular alignment
- Lenses:
 - -Microlens
 - -Gradient-index lenses
 - -Mounted into alignment fixture
- Fiber ends prepared prior to insertion
- Losses: few tenths of a dB

- Gradient-index lens
 - \square Piece of glass with parabolic variation in n(r)
 - Behaves as a lens but has flat surfaces
 - Also called GRIN lens

Connectors: Commercial Connectors

- •Several connector popular types
- Few standards for connectors
- Patent and proprietary rights
 - -Frequently "second-sourced" or cross-licensed
- •Typical insertion losses for connectors in the field
 - -Few tenths of a dB to a few dB

Commercial Connectors: SMA & Biconic Connectors

- SMA connector (left)
 - Borrowed from RF field
 - Formerly popular connector for multimode fibers
 - Ferrule-type connector

Biconic connector (right)

- Developed by AT&T
- Wide use in older single-mode systems
- Supplanted by ST connector
- Uses molded and ground plastic or ceramic plug

Commercial Connectors: ST & FC Connectors

ST connector (left)

- Registered trade-mark (AT&T)
- Widely used in single-mode systems
- Also available for multimode systems
- Features spring-loaded bayonet clip
- Both score-and-break and grindand-polish methods used to prepare fiber ends
- Fairly easy to terminate

•FC connector (right)

- Developed by NTT (Nippon Telephone and Telegraph)
- Single-mode fibers
- D3 connector is NEC (Nippon Electronics Corporation) clone of FC connector
- Spring-loaded connector with screw-on nut
- Metal ferrule aligns fiber

Commercial Connectors: FC/PC & D4 Connectors

•FC/PC connector

- Offshoot of FC connector
- Pure ceramic ferrule
 - » Increased alignment accuracy over metal/ceramic ferrule in FC
- Physical contact to minimize reflections
- Primarily used for long-haul and research instruments

D4 connector

- Designed by NEC
- Similar to D3 connector, but smaller

Commercial Connectors: FDDI Connectors

SC connector

- Plastic-case connector
- Push-pull configuration
- Ceramic ferrule
- Increasingly popular in networks

FDDI connector

- Dual-fiber connector
- FDDI standard
- Use in FDDI data links
- Used for attachment to stations on link

Miniature RJ and MU Connectors

- New connectors
- Network applications
- Compatible with network wall plugs
- •Small "footprint"
- •RJ (left)
- •SC vs MU (right)

Splice and Connector: Loss Measurement

- •Measured losses depend on many variables
 - -Optical power launch conditions
 - » Excite all modes in MM fiber
 - Use long pigtail
 - Equilibrium mode simulator: short fiber wrapped in serpentine path
 - Source type
 - -Characteristics of fiber on either side of joint
- Experimental setup
 - -Measure power P_1 and P_2 at the input and output of connector

$$L_{
m splice} = -10 {
m log} ig(P_2/P_1 ig)$$
 insertion loss

- Losses measured are very susceptible to mode excitation
 - Fqual mode excitation desired
 - Can use
 - * Long fiber before connector/splice
 - * Shorter fiber wrapped in serpentine path
- Multimode fibers can introduce loss effects
 - Due to mode coupling and connector/splice effects

Couplers

Couplers

- -Split power into two or more fibers
- -Combine optical power
- -Split light according to polarization
- -Optical switches: switch light between output fibers
- Usually each output equally shares signal
 - -Possible to vary coupling fraction
- Losses
 - -Splitting loss: $L_{\text{pwr split}} = -10\log(1/N) = 10\log(N)$
 - Excess losses: extra losses
 - -Insertion loss: Splitting loss plus insertion loss
 - -Splitting matrix:

Losses		Output port	
		Α	В
Input	1	3.5 dB	3.5 dB
port	2	3.5 dB	3,5 dB

Coupler Functions

- Splitter (left)
 - -Splits/divides power
 - Standard splits for 2x2: 50:50, 90:10, 99:1
 - Other custom ratios
- Polarizing splitter
 - -Splits signals into two outputs
 - Output polarizations orthogonal
 - Single-mode fibers

- Combiner (right)
 - Combines input channels into one
 - Coherent combination possible with SM fiber
 - Many (not all) passive devices are reciprocal
 - » Splitter sometimes used as combiner

Coupler Functions (cont.)

- Monitor
 - Couples little light (e.g., 1%) into monitor port

- Directional coupler (or circulator):
 - Nonreciprocal device
 - Isolates one input from one output

- Multiplexer (wavelength multiplexer):
 - Combiner
 - Joins two or more signals at different wavelengths
- Demultiplexer (wavelength demultiplexer):
 - Splits signals according to wavelength

Couplers: 1. Fused Coupler

- Also called biconical taper coupler
- Light couples into other fibers through thinned cladding
 - Evanescent wave coupling

- Coupling fraction controlled by amount of tension and time of heating.
 - Surprisingly, equal coupling can be achieved for all fibers with very low crosstalk and low insertion loss
 - >100 fibers formed into star coupler

Couplers: 2. Mode-Mixing Rods

- •Glass rod
 - -Few mm diameter
 - -Graded-index profile
 - -Length allows input light to fully expand
 - -Output end uniformly excited
- •Concept works in transmissive configuration
 - -Make *reflective* system by
 - » Cutting in half,
 - » Adding reflecting surface,
 - » Moving outputs to same end as inputs

Couplers: Typical Specifications

- Losses
 - -Desired *splitting loss*

»
$$L_{split} = -10log(1/N) = log N dB$$

- -Undesired excess loss
 - »Typical excess losses: ~ 0.5 dB
- •SM and MM couplers available
- •See course web site for sample spec sheet

Splices, Connectors and Couplers: Summary

- Splices and connectors
 - Losses depend on...
 - »Fiber geometry (core ellipticity, corecladding concentricity, area mismatches, etc.)
 - »Characteristics of fiber (NA, index profile)
 - »Mechanical alignment (lateral and longi-tudinal displacement, angular misalignment)
 - »Power distribution in fiber (excitation conditions or mode conversion effects)
 - »Fiber end-face quality (scratches, presence of lips or hackles, parallelness of end faces)
 - Commercial connectors and splicing have acceptable losses (<1 dB)

- Couplers
 - Combine and separate light
 - Primary parameters
 - » Excess insertion loss
 - » Splitting loss of coupler

Fiber Grating Devices

- Goal: Inline optical filters with low insertion loss
- Applications
 - Add/drop filters for multiwavelength systems
 - Reflectors for amplifiers and fiber lasers
 - Reflectors for external-cavity lasers
 - Dispersion compensating devices
- Physical effect
 - High intensity UV can change n of glass (permanently)
 - Expose fiber to interference pattern to write "grating" in fiber core
 - » Use side exposure through "phase mask"
 - Transmission/reflection spectral properties depend on grating period and amplitude

Fiber Gratings: Laser Reflectors

- High reflectivity at desired wavelength
 - -Left fiber laser with grating mirrors
 - -Right external cavity laser (long resonator length ensures small Δv)

Fiber Gratings:Dispersion Compensation

- Aperiodic grating
- Short- λ reflect in regions of high spatial periodicity
- Design grating to "reverse" pulse-stretching effects of GVD dispersion in SM fibers

Optical Isolators

- Ensure one-way light flow
- Return loss
 - -30 dB nominal
 - -60 dB premium device
- Applications
 - Isolate single-frequency lasers
 - Isolate optical amplifiers
- See course web site for sample spec sheet

Summary

- •Use splices for permanent connection; connectors for demountable connection
 - Losses depend on fiber properties (intrinsic losses) and fiber alignment (extrinsic losses)
 - -Losses ~0.1s dB
- Fiber components
 - -Splitters, combiners, circulators (directional couplers), multiplexers and demultiplexers, switches, polarization components (splitters, combiners, isolators)
 - Filters (Bragg gratings, stacked dielectric layers, Fabry-Perot mirrors)